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This expression is free from defect and the terms 
containing defects vanish. This is identical with the case 
for k = qn in Ray et at. (1980) as expected. 

Case II. For h = nqa ~ k = n' qb. + 1, the situation is 
analogous to that of (16) of Ray et al. (1980) when k = 
nq + 1. Here too we get, under the above conditions, 

6 ( 2 -  6) 
I(a~) = NF 2 , (17) 

1 -- 2(1 -- 6) cos 2zro9 + (1 - -  6 ) 2  

which is, as expected, identical with (19) of Ray et al. 
(1980). This shows that for this type of reflection, the 
intensity will be unaffected by a displacement in the a 
direction but will be affected by b-axis displacements. 

Case III. When h = nqa +_ 1, k = n' qb, the situation 
becomes almost similar to that of case II except that the 
intensity is now affected by a displacement and remains 
unaffected by b-axis disorder. Equation (15) reduces to 

),(2- ),) 
1(o9) = NF  2 (18) 

1 - 2(1 - ),) cos 2zro9 + (1 - ),)2" 

Both (17) and (18) will on simplification reduce to 
equation (6) of Wilson (1962). 

Case IV. h = nqa + 1 and k = nqb + 1. This is the 
most general case when both the displacements will 
manifest themselves in the observed intensity which will 
be given by 

I(o9) = N F  2 
(y + 6 ) ( 2 -  ), + 6) 

1 -- 2(1 -- ), + b') cos 2no9 + (1 - ), + 6)2 

(19) 

Numerical computations and discussion 

Numerical computations for different values of a, fl and 
qa, qb have been carried out for reflections h = nqa +_ 1 
and k = n' qb 4-_ 1 which correspond to case IV. Hence, 
(19) was used for these calculations. The results of the 
calculation for different cases have been shown in Figs. 
1 and 2. Fig. 1 shows that all the curves are 
symmetrical and have the same general features. Only 
the sharpnesses of the relative intensity peaks increase 
as the magnitudes of the displacements, i.e. a/qa and 
b/qb, both decrease-an observation similar to that of 
Ray et al. (1980). Similarly, Fig. 2 reveals that the 
peaks of the relative intensities corresponding to a fixed 
value of qa, qb become broader and background more 
enhanced as the probabilities, i.e. a and fl, increase. 
These are expected results, as an increase in the values 
of a and fl and a decrease in the values of qa and qb 
obviously mean that the magnitude and probability of 
shift both increase and hence the crystal becomes more 
defective. 

Thus the general conclusion is that the magnitude 
and the probabilities of the defect will not only broaden 
the peak but increase the general background as well. 
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Abstract 

The lattice energy of isolated, regular tetrathia- 
fulvalene (C6H484) and tetracyanoquinodimethane 
(C12H4N4) segregated and mixed stacks was minimized 
for four structural parameters; a longitudinal and 
transverse slip of neighbouring molecules relative to 
each other, a rotation of a neighbouring molecule 

0567-7394/81/040529-07501.00 

perpendicular to the molecular planes and the perpen- 
dicular distance between two neighbouring molecules. 
The van der Waals and repulsive interactions only were 
calculated from atom-atom potentials. The absolute 
minima of the lattice energies were achieved at stack 
structures slipped longitudinally with all stack 
parameters deviating less than about 0.1 A from their 
observed mid-range values. The mixed stack proved to 
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be less stable than the segregated stack only by about 
some tenths of a kJ mo1-1. Additional local minima 
were found for the segregated tetrathiafulvalene stack 
and for the mixed stack, which are not (yet) observed 
experimentally. The eclipsed tetrathiafulvalene stack 
and the tetracyanoquinodimethane stack with trans- 
verse slip, both of these observed experimentally, could 
not be predicted within a one-dimensional isolated 
stack model. 

Introduction 

A simple atom-atom approximation (Kitaigorodskii, 
1973) has been shown useful in the calculation of the 
lattice energy and stability against dissociation into 
components of organic conductor crystals like T T F -  
TCNQ (Govers, 1978). Also, molecular libration and 
orientational disorder of related molecular compounds 
can be calculated (Shmueli & Goldberg, 1973) as can 
be substitutional disorder (Govers, 1979). It has been 
shown to be possible to derive atom-atom potential 
parameters for pure TTF, which predict unit-cell 
parameters within 0.2 A or about 4 ° from their 
observed values (Sandman, Epstein, Chickos, 
Ketchum, Fu & Scheraga, 1979). The electrostatic part 
of the atom-atom potential can be used to predict the 
stability of uniform charge distribution relative to a 
Wigner lattice (Metzger & Bloch, 1975). Recently it 
has been shown to be possible to predict the correct 
longitudinal slip of molecules relative to each other at 
constant values of the other stack parameters of 
isolated TTF stacks (Govers & de Kruif, 1980). 

Here the latter calculation is extended to isolated 
stacks of TTF and TCNQ molecules with a four- 
parameter variation of the stack structure and the 
corresponding intermolecular stack energy. This effort 
can be considered as the first step of a complete 
three-dimensional structure prediction from atom- 
atom potentials, by which it could be possible to decide 
from given molecular geometry and composition 
whether stable conducting Soos-type structures (Soos, 
1974) can be prepared. The second step should consist 
of positioning and orientation of stacks relative to each 
other by a search for absolute and local minima of 
the interstack interactions, whereas a simultaneous 
variation of intra- and inter-stack structural parameters 
would require too much computational time. 

Within the eight Soos-type structures we will 
consider only regular stacks with uniform perpen- 
dicular distances between parallel and flat molecules for 
reasons of simplicity and because the non-uniformity in 
alternating stacks is small and might well be within the 
limit of accuracy of the method. In addition it is 
impossible to include the electrostatic part of the 
atom-atom potential in a charged isolated and segre- 
gated stack as interactions with neighbouring stacks 

charged oppositely have to be considered (Govers & de 
Kruif, 1980). Therefore we will drop this electrostatic 
part, leaving only the van der Waals and repulsive 
contributions. As a consequence we cannot discern 
between complex and simple Soos stacks nor between 
Wigner stacks and stacks charged uniformly. More- 
over, serious errors might be introduced in the 
predicted stack structures as the electrostatic contri- 
bution is not small. The four stack parameters R, J, e 
and X are depicted in Fig. 1. These define completely 
the mutual position and orientation of two parallel 
molecular planes. A third, fourth, etc. molecule can be 
positioned forming either straight or zigzag or spiral 
stacks. Only if the summation limits of the atom-atom 
potentials exceed the doubled perpendicular distance 
will we be able to predict these variations of stack 
structure, and this will not be the case here. 

Segregated stacks are built up from either identical 
TTF or TCNQ molecules. Mixed stacks contain 
alternate TTF and TCNQ molecules. 

Method 

The stack energy, E, is considered to be a pairwise sum 
of interatomic interactions, Eki j, between the n atoms, i, 
of a central molecule in the stack and the n' atoms,j,  of 
the z surrounding molecules, k (Govers & de Kruif, 
1980): 

g n H I 

E = ½N ~ ~ ~ Ekij(rkij) (1) 
k i j 

with 

Eku(rkU)=--Atijrk-i} + Bti jexp(-Cti jrki j ) .  (2) 

In (I) the factor ½ is introduced to avoid double 
counting of pair interactions, N is. the number of 
molecules in the stack and rki j are the interatomic 
distances. 

The parameters Atij, Btij and Cti j in (2) depend only 
on the ten different types, t~j, of interatomic pairs CC, 
CH . . . .  , SS, which exist for the C, H, S and N atoms of 
TTF and TCNQ. We used the sets 1 and 2 of Table 1 
of Govers (1978) throughout the calculations. These 
parameters were used as previously, i.e. in combination 

/ 

b i/I 
B l/I 

/ 
Fig. 1. The four stack parameters. 
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wi th  s u m m a t i o n  limits o f  abou t  5 - 5 / k ,  y ie lding 8 0 %  o f  
the  s tack  ene rgy  for set 1, and  wi th  s u m m a t i o n  l imits o f  
15 A,  yielding 1 0 0 %  o f  the  s tack  ene rgy  for set 2 
(Govers ,  1978). As  set 2 p r o d u c e d  the  expec ted  and  
relat ively low values for the  s tack  ene rgy  and its 

d e p e n d e n c e  on  s t ructure ,  we did no t  use it for the  
p red ic t ion  o f  z igzag  or  spiral s tack s t ruc tures  in spite o f  
the  fact  tha t  its s u m m a t i o n  l imits are h igher  than  the  
doub led  pe rpend icu la r  d i s t ance  be tween  two  ne ighbour -  
ing molecules .  

Table  1. Observed regular TTF and TCNQ stack structures 

Stack R (/~) e (A) 6 (]~) b (/k) References 

TTF ° 3.62 0.25 1.79 4.05 (a) 
TTF + °-TC NQ- ~ 3.47 0.02 1.65 3.84 (b) 
TTF+~-DETCNQ -Q 3.60 0.00 1.40 3.86 (c) 
TTF + O-TNAP -~ 3.4 0.0 1.61 3.76 (d) 
TTF(lsl) 3.51 _+0.11 0.12_+0.12 1.6_+0.2 3.90_+0.15 

TTF +o.77. C1o.77 3" 56 0.0 0"0 3" 56 (e) 
TTF +°'68. C1o.68 3-60 0.0 0.0 3.60 (e) 
TTF +0.92 C1o.92 3.59 0.0 0.0 3.59 (f)  
TTF +°'76. Bro.76 3.57 0.0 0.0 3.57 (e) 
TTF +°'59. Br~.59 3.56 0.0 0.0 3.56 (e) 
TTF +°'72. I~.72 3.56 0.0 0.0 3.56 (e) 
T T F  +°'69 I -  3.77* 0.0 0.0 3.77 (e) 

• 0 - 6 9  

TTF ÷5/7. i~/7 3.56 0.0 0"0 3.56 (g) 
TTF ÷s/7. I~-/7 3.55 0.0 0.0 3.55 (h) 
TTF +6/tl . SC N 6/i i 3.63 0.0 0.0 3.63 (i) 
TTF+°'57. SCNo.57 3.61 0.0 0.0 3.61 (j) 
TTF +6/'' . SeCN6/I l 3.61 0.0 0-0 3.61 (i) 
TTF(ecl) 3.59 + 0.04 0-0 -+ 0.05 0.0 -+ 0.05 3-59 -+ 0.04 

TC NQ°(ltsl) 3.45 2.29 3.91 5.69 (a) 

TTF+O-TCNQ -~ 3.17 0.07 2-10 3-80 (b) 
TTTF÷O-TCNQ -° 3.20 0.03 2.03 3.79 (k) 
TMTTF-o-TCNQ -~ 3.27 0-04 2.10 3.89 (/) 
TMTSF+Q-TCNQ-. ~ 3.26 0.05 2.07 3.86 (m) 
TMTTF~-.~-TCNQ~ Q,° 3.24 0.02 2.00 3.81 (n) 
HMTTF ÷ ~-TC NQ-Q 3.26 0.00 2-15 3.90 (o) 
HMTSF+~-TCNQ -~ 3.21 0.00 2.20 3.89 (p) 
NMP ÷ o-TCNQ -~ 3.26 0.05 2.03 3.84 (q) 
Quinolium ÷-TC NQ~ 1/2 3.22 0.00 2.09 3.84 (r) 
TMPD÷-TCNQ~ -1/2 3.24 0.00 2.00 3.81 (s) 
Acridinium ÷-TC NQ f 1/2 3.25 0.04 2.09 3.86 (t) 
TTT÷-TCNQE 1/2 3.18 0.0 2.06 3.79 (u) 
(C 6HsCH3)2Cr + . TCNQ? ° 3.29 0-00 2.05 3.88 (v) 
TMA÷(I~) ~/3_TCNQ-2/3 3.23 0.00 2.04 3.82 (w) 
Rb +. TCNQ- (Tetragonal) 3.33 0.08 1.98 3.87 (x) 
Rb + . TCNQ- (Tricl~ic) 3-43 0.03 1.85 3.90 (y) 
NH4 +. TCNQ- 3.31 0.05 1-83 3.78 (z) 
TCNQ(lsl) 3.30 + 0.13 0.04 + 0.04 2.02 + 0.2 3.84 -+ 0.06 

Na + . TCNQ- (353 K) 3.39 0.91 0.27 3-52 (aa) 
K +. TCNQ- (High temperature) 3.48 0.86 0.27 3-59 (bb) 
(C6HsCH 3)2Cr ÷ . TCNQ- 3.42 1.15 0.04 3.61 (cc) 
TCNQ(tsl) 3.44 _+ 0.05 1.01 _+ 0.15 0.16 _+ 0.12 3.57 + 0.05 

DMDBTTF-TCNQ(1 s 1) 3.55 0.24 2.82 3.54 (dd) 

References: (a) Phillips, Kistenmacher, Ferraris & Cowan (1973); (b) Kistenmacher, Phillips & Cowan (1974); (c) Schultz, Stucky, 
Craven, Schaffman & Salamon (1976); (d) Berger, Dahm, Johnson, Miles & Wilson (1975); (e) Scott, La Placa, Torrance, Silverman & 
Welber (1977); (f)  Dahm, Johnson, May, Miles & Wilson (1975); (g) Daly & Sanz (1975); (h) Johnson & Watson (1976); (i) Wudl, 
Schafer, Walsh, Rupp, DiSalvo, Waszczak, Kaplan & Thomas (1977); (j) Kobayashi & Kobayashi (1977); (k) Chasseau, Gaultier, Hauw, 
Fabre, Giral & Torreilles (1978); (l) Phillips, Kistenmacher, Bloch, Ferraris & Cowan (1977); (m) Bechgaard, Kistenmacher, Bloch & 
Cowan (1977); (n) Kistenmacher, Phillips, Cowan, Ferraris & Bloch (1976); (o) Chasseau, Comberton, Gaultier & Hauw (1978); (p) 
Phillips, Kistenmacher, Bloch & Cowan (1976); (q) Fritchie (1966); (r) Kobayashi, Fumiyuki & Yoshihiko (1971); (s) Hanson (1968); 
(t) Kobayashi (1974); (u) Shibaeva & Rozenberg (1976); (v) Shibaeva, Atovmyan & Orfonova (1969); (w) Filhol, Rovira, Hauw, Gaultier, 
Chasseau & Dupuis (1979); (x) van Bodegom, de Boer & Vos (1977); (y) Shirotani & Kobayashi (1973); (z) Kobayashi (1978); (aa) 
Konno & Saito (1975); (bb) Konno, Ishii & Saito (1977); (cc) Shibaeva, Atovmyan & Rozenberg (1969); (dd) Shibaeva & Yarochkina 
(1975). 

* Not included in the mid-range values. 
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The interatomic distances rl, ij (fi, e,R,2~) were cal- 
culated from 

rko = I R k Kjo  + T k - -  Klo I (3) 

with 

0 

(4) 

In (3) Kto denote the vectors of the atomic coordinates 
of a molecule in the reference axial system of its 
principal axes of inertia. These were calculated from the 
fractional coordinates and cell parameters of TTF and 
TCNQ in TTF-TCNQ (Kistenmacher, Phillips & 
Cowan, 1974) and atomic masses, k denotes the kth 
neighbour of central molecule o. R k denotes the 
rotation matrix of neighbour k, in which X can be :/:0 
only if k is odd. T k denotes its translation vector in the 
reference axial system. 

Equations (1)-(4) were applied in a two-run gridpoint 
scan of E (R,e,fi,2') similar to other calculations of the 
lattice energy (e.g. Giglio, Liquori & Mazzarella, 
1969). In the first run increments of 0.2, 0.2, 0.4 A and 
22.5 ° were used for R, e, fi and X, respectively. The 
ranges within which R, e and fi were varied were 
inferred from experimental information (see 
Experimental information). X was varied from - 9 0  to 
+90 ° in view of the symmetries of the TTF and TCNQ 
molecules. The coarse minima and new regions of 
variation found in the first run were refined in a second 
run with increments of 0.05, 0.1, 0.1 A and 5 ° , 
respectively. In this way and by applying graphical 
interpolation we could find absolute and local minima 
with an accuracy of about +0.02 A (for R, e, fi), + 1 o 
(for X) and +0.04 kJ mo1-1 (for E). This accuracy is 
high enough in view of the accuracy of the experi- 
mental information on R, e and fi and in view of the 
errors introduced by uncertainties of the atom-atom 
potential parameters. At the same time the total 
number of evaluations of the stack energy or grid 
points to be scanned in one run amounts to about one 
thousand, low enough for rapid calculations on a 
CDC-Cyber 173 computer. 

Experimental information 

To find the ranges within which R, e and fi have to be 
varied and for a comparison of calculated and 
experimental results we have collected all known 
experimental information on R, e and fi of TTF and 
TCNQ compounds with regular stacks (Table 1). Two 
types of segregated TTF stacks are met; stacks in 
which the molecules are slipped longitudinally relative 
to each other (lsl) and eclipsed stacks (ecl). Segregated 

TCNQ stacks are slipped either longitudinally (lsl) or 
transversely (tsl). Pure TCNQ displays a two- 
dimensional layer structure. Somewhat artificially one 
can discern interpenetrating stacks within a layer with 
molecules slipped longitudinally and transversely (ltsl). 
A mixed-stack TTF-TCNQ modification is not (yet) 
observed. However, the DMDBTTF-TCNQ crystal 
displays mixed stacks with longitudinal slip (lsl). 

In Table 1 the values of R are those reported in the 
literature, e and fi values were estimated from overlap 
projections as depicted in the literature comparing these 
with the dimensions of TTF and TCNQ molecules 
calculated from atomic coordinates in TTF-TCNQ 
(Kistenmacher et al., 1974). 

Also, symmetry considerations could be used in 
some cases. From the values of R, e and fi, the stacking 
axis b was calculated: 

b = (R 2 + ~2 + 62)1/2. (5) 

Equation (5) is deduced easily from Fig. 1. The value of 
b calculated in this way corresponds within some 
hundredths of an A with experimental values of b 
reported in the literature, showing the accuracy of our 
estimations. 

The final results are the mid-range values and ranges 
per type of stack, which are also included in Table 1. 
These show clearly the potential of an isolated stack 
model per type of stack. Interstack and intramoleeular 
interactions seem to influence intrastack structural 
parameters for each type of stack only to the extent of 
about 0.1 A. These interactions seem to be more 
important for the establishment of the type of stack 
itself. 

Calculations and results 

In the first run the TTF stack parameters R, e and 
were varied from 3.3 to 3.9 A, 0.0 to 1.0/k and 0.0 to 
2.4 A, respectively, with increments and variations of X 
as mentioned under Method. These ranges were 
inferred from Table 1. For the TCNQ and mixed 
TTF-TCNQ stacks we used the ranges 3.0 to 3.8 A, 
0.0 to 1.0 A and 0.0 to 2.4 A. 

The resulting coarse minima were always obtained at 
values of e and/or fi close to 0.0 A. In these cases +X 
or -X produces about the same stack energy for 
reasons of molecular symmetry. Thus we used only 
positive values of 2: in the second run. The coarse 
minima were used for the definition of new ranges of 
variations and the small increments mentioned under 
Method were applied in the second run. As the mixed 
TTF-TCNQ stack did not show a minimum structure 
with longitudinal slip within ~ = 0.0 to 2.4 A, the 
variation of fi was extended to 4.0 A in the second run. 
As we wanted to compare with observed eclipsed TTF 
stacks and as no true eclipsed minimum was obtained, 
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an additional calculation was performed in this case, 
varying R at constant values of fi = e = Z = 0. 

The final results are included in Table 2, which also 
contains (underlined) approximate values of the stack 
energy at the observed stack structures of Table 1. 
Overlap projections of neighbouring molecules in the 
stack showing fi and e and obtained via set 1, are 
depicted in Figs. 2(a)-(e). 

a[c 

(a) 

ca[c 

S 

(b) 

(c) 

(~) 

• obs, 
\ ~ c a t c  

(e) 

Fig. 2. Calculated (caic) and observed (obs) overlap projections of 
neighbouring molecules in a stack. (a) TTF (lsl), (b) TTF (ecl), 
(c) TCNQ 0sl), (d) TCNQ (ts0, (e) (DMDB)TTF-TCNQ 0s0. 

Conclusions 

The following conclusions can be drawn from the 
results obtained from set 1 (Table 2). 

Firstly, the segregated stack structures predicted 
with longitudinal slip correspond with the experimental 
TTF and TCNQ stacks within the experimental range 
and even the slipped and mixed T T F - T C N Q  stack 
predicted is close to the experimental D M D B T T F -  
TCNQ structure in spite of the rather strong geometric 
difference between the TTF molecule and its derivative. 
Moreover, the structures predicted correspond to 
absolute minima of the stack energy with values from 
3.8 to 6.5 kJ mo1-1 lower than those of local and other 
minima predicted. Finally, the fi value predicted for 
TTF, 5 = 1.72 + 0.02 .A at R = 3.50 A, is not too far 
from the value predicted previously, fi = 1.54 A at R = 
3.47 A (Govers & de Kruif, 1980). 

However, the widths of the experimental ranges of R, 
e and fi vary from 0.04 to 0.2 ,A and corresponding 
deviations from observed values, or uncertainties in 
predicted ones, can be expected in individual cases of 
TTF and TCNQ systems. These deviations and 
uncertainties can be caused by intra- and interstack 
effects and by uncertainties in the atom-atom potential 
method used. Intrastack interactions other than van der 
Waals and repulsive, e.g. electrostatic and metallic 
interactions, can be present (Govers, 1978; Govers & 
de Kruif, 1980) as can be geometric and electronic 
differences up to 0.05 A and one-electron charge 
transfer in molecular species of TTF (Kobayashi & 
Kobayashi, 1977) or TCNQ (Flandrois & Chasseau, 
1977). The latter, in turn, are caused by differences in 
counter(-ion) stacks and in the resulting interstack 
interaction. 

Nevertheless, set 1 proves to be quite useful for the 
prediction of stack structures with longitudinal slip. In 
a three-dimensional structure calculation the variation of 
R, e, 6 and Z can be largely excluded when dealing with 
this type of stack, stressing their one-dimensional 
character. 

Secondly, interstack, electrostatic or metallic inter- 
actions seem to preserve the observed eclipsed stack 
structure in TTF compounds with spherical or rod-like 
anions (TTF+XXx, with X = Cl, Br, I, SCN, SeCN, 
Table 1) for changing into a slipped or a compact, but 
pseudoeclipsed, structure with 2: = 36 o. The latter two 
structures have stack energies lower by 6.5 to 4.2 kJ 
mol -~, respectively, than the true eclipsed structure. 
The importance of electrostatic and metallic interac- 
tions in these systems has been pointed out by Scott, La 
Placa, Torrance, Silverman & Welber (1977). 
Although our isolated stack atom-atom potential 
method does not predict the true eclipsed minimum 
structure, yet it is successful in the prediction of R at 
constant fi = e = Z = 0. A value ofR = 3.62 _+ 0.01 A 
is predicted, close to the experimental value of R = 
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Table 2. lntermolecular van der Waals plus repulsive stack energies and structures of  regular TTF and TCNQ 
stacks 

Atom-atom 
Stack potentials* 

TTF lsl Set 1 

ecl 

(eel) 
lsl Set 2 
ecl 
(ecl) 

TCNQ lsl Set 1 

tsl 

lsl 
(ecl) 

TTF-TCNQ lsl 

ecl 
ecl 

Set 2 

E (kJ mol-~)t R (A) 

-60.92±0.04 3.50±0.01 
-59.5 3.51±0.11 

-54.39±0.04§ 3.62±0.01§ 
-54.5 3.59±0.04 

-56.77±0.04 3.52±0.01 
-44.75±0.04 3.45±0.01 
-42.78±0.04§ 3.56±0.01§ 
--45.50±0.04 3.44±0.01 

--65.74±0.04 3.39±0.01 
--63.7 3.30±0.13 

--54.1 3.44±0.05 

-38.55±0.04 3.36±0.01 
-38.72±0.04 3.36±0.01 

Set1 -62.77±0.04 3.50±0.02 
-60.39 3.559 

-59.04±0.04 3.50±0.01 
Set2 -43.62±0.04 3.39±0.01 

*Setland2ffomT~lel(Govers,  1978). 

(A) ~ (A) z (°) b (A)~ 

0.0 1.72±0.02 0.0 3.90±0.02 
0.12 ± 0.12 1.60 ± 0.2 0.0 3-90 ± 0-15 

0.0 0.0 0.0 3.62±0-01 
0.0 ±0.05 0.0 ±0.05 0.0 3.59±0.04 

0.0 0.0 36±1 3.52±0-01 
0.0 1.32±0.02 0.0 3.69±0-02 
0.0 0.0 0.0 3.56±0.01 
0-0 0.0 39±1 3.44±0-01 

0.0 2.10±0.05 0.0 3.99±0.05 
0.04±0.04 2.02±0.20 0.0 3-84±0-06 

1.01±0.15 0-16±0.12 0.0 3.57+0.05 

0.0 1-23±0.02 0.0 3.59±0.02 
0.0 0-0 24±1 3-36±0-01 

0.0 3.50±0.01 0.0 4.95±0.02 
0.249 2.829 0.09 4.54~ 

0.0 0.0 0.0 3.50±0-01 
0.0 0.0 0.0 3.39±0.01 

t Results obtained via kcal mo1-1 -- 4.19 kJ mo1-1 using set 1 and set 2 (Govers, 1978). 
Calculated via (5), except for the experimental values (underlined). 

§ No true minimum; E(R) minimized for an eclipsed stack (fi = e = Z = 0.0). 
9 Value for DMDBTTF-TCNQ stack structure. 

3.59 + 0.04 A. Thus, unless we are certain that a true 
eclipsed structure must be chosen for other reasons, 
a three-dimensional structure calculation demands 
variation of R and X and only fi = e - 0 can be applied 
in this case. The situation is even worse for TCNQ 
stacks not slipped longitudinally as our method fails to 
predict the observed structure with transverse slip. 
These stacks are met only for TCNQ salts with 
spherical cations (Table 1). The importance of electro- 
static interactions has been shown by Metzger (1975). 
In this case at least R and e, but probably also fi and Z, 
must be varied in a three-dimensional structure 
calculation and the idea of an isolated stack has to be 
abandoned. 

For the mixed T T F - T C N Q  stack experimental 
information is lacking. A true eclipsed and local 
minimum is predicted with an energy only 3.8 kJ mo1-1 
above the absolute minimum of the structure slipped 
longitudinally. 

A three-dimensional structure prediction without 
variation of R, fi, e and Z seems possible. Furthermore, 
the slipped and eclipsed structures of the mixed stack 
are only 0.6 to 4.4 kJ tool -1 less stable than mean 
segregated stacks slipped longitudinally, indicating the 
possibility of  a mixed-stack modification of T T F -  
TCNQ. 

Finally, the conclusion drawn above only holds for 
a tom-a tom potential set 1. Set 2 has to be rejected for 
several reasons. It has already proven to be rather poor 

for the calculation of the lattice energies of pure T C N Q  
and of T T F - T C N Q  (Govers, 1978). Here it also 
produces stack energy values about 20 kJ mo1-1 higher 
than set 1 does. Moreover, it predicts much too low 
values for fi of TTF and TCNQ and even no slipped 
structure for the mixed stack. It predicts values for the 
stacking axis, b, which are rather different for the 
slipped stack structures of TTF and T C N Q  of 3.69 + 
0.02 and 3.59 _+ 0.02 A, respectively, and which are 
much too low in view of the experimental mid-range 
values of 3.90 + 0.15 and 3.84 ___ 0.06 A, respectively. 
Set 1 is more correct with values of 3.90 + 0.02 and 
3.99 + 0.05 A, respectively. This criterion seems to be 
rather important for a three-dimensional structure 
calculation, in which two TTF and T C N Q  stacks of 
equal length of say 3.90 ,/k have to be combined. The 
explanation of the poorer results of set 2 has to be 
sought in its method of derivation and the compounds 
on which it is based (Govers, 1978). 

I thank D. E. Williams, working temporarily in the 
Structural Chemistry Group, State University, Utrecht, 
for reading carefully this paper. 
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